Giovanni User Manual  Version 1.1

Giovanni User Manual

Giovanni is an online (Web) environment for the display and analysis of geophysical parameters in which the provenance (data lineage) can easily be accessed. This user manual provides assistance on how to use Giovanni and information on Giovanni's data products and services.

Table of Contents

Quick Start

Visualization Type Selection

Date Range Selection

Region-of-Interest (Bounding Box) Selection

Variable Selection – Faceted Search

Variable Search – Keyword Search

Plotting Data and Replotting Options

Projections (added October 2017)

Output Options

How to acknowledge Giovanni

General Plot/Service Guidelines

Calculating Weighted Statistics 

Plot/Service Types

Maps

Time-Averaged Map

Animation

Seasonal or Monthly Average Maps

Accumulation Map

Time-Averaged Overlay Map

Comparisons

Correlation Map (and other comparisons)

Static Scatter Plot

Interactive Scatter Plot

Time-Averaged Scatter Plot

Area-Averaged Scatter Plot

Difference of Time-Averaged Maps

Time Series

Area-Averaged Time Series

Seasonal (Interannual) Time Series

Hovmöller Plots

Time Series of Area-Averaged Differences

Vertical Plots

Cross Section (Latitude-Pressure)

Cross Section (Longitude-Pressure)

Cross Section (Time-Pressure)

Vertical Profile (Time and Space Averaged)

Other Plots

Zonal Mean

Histogram

Other Features

Units Conversion

Release Notes

4.28 Release Notes

4.27 Release Notes

4.26 Release Notes

4.25 Release Notes

4.24 Release Notes

4.23 Release Notes

4.22 Release Notes

4.21 Release Notes

4.19 Release Notes

4.18 Release Notes

4.17 Release Notes

4.16 Release Notes

4.15 Release Notes

4.14 Release Notes

4.13 Release Notes

4.12 Release Notes

4.11 Release Notes

4.10 Release Notes

4.9 Release Notes

4.8 Release Notes

New for Giovanni-4 vs. Giovanni-3

New User Interface

Bookmarkable URLs

Known Issues

Browser Compatibility

User Interface

Map (Time Averaged)

Map (Time Averaged Overlay)

Map (Difference of Time Averaged)

Interactive Scatter and Time-Averaged Scatter Plots

Time Series Plot

Animation

Seasonal Time Series


Quick Start

Using the Giovanni user interface, it is possible to easily find and display selected data on various types of plots.  It is also possible to download the plot source files in NetCDF format (and other formats). 

The Giovanni User Interface

The main sections of the interface are described subsequently.  The section titles are linked to short demonstration videos.

Visualization Type Selection

At the top of the interface are menus for the various kinds of visualizations available in Giovanni.  Selecting a visualization will cause it to be highlighted in yellow.  The default option is the Time-Averaged Map.

The image below shows the menu of Time Series options which appears when the Time Series button is clicked.

After Time Series: Hovmöller, Latitude-Averaged was selected, this Visualization Type is highlighted.

Date Range Selection

The next section of the interface to examine is the Date Range Selection section.  Begin Dates and End Dates  are selected with drop-down calendars, as shown below.  The dates may also be entered manually, in YYYY-MM-DD format.  Error messages will indicate if the date range is entered incorrectly.

Note:  if monthly data products are selected prior to selection of the date range, the Date Range selector will only allow choice of year and month.  


Region-of-Interest (Bounding Box) Selection 

The section to the right of the Date Range section is the Select Region section.  There are three options for the specification of the Region-of-Interest:  manually (with latitude-longitude boundaries for a rectangular region), with the interactive map by click-and-drag with the cursor, or by selecting a Shapefile area from the Shapefile menu.

Latitude-Longitude coordinates are entered as West, South, East, and North, with western longitudes and southern latitudes entered as negative numbers.  Decimal coordinates are used in this case.

If the cursor is used to select a region, the selected region will appear as shown below.  The latitude-longitude boundaries will be shown automatically.


Shapefiles are chosen from the Shapefile menu.  U.S. States, Countries, and Major Watersheds are shapefile options.  Clicking in the radio button to the left of the country name selects that shapefile.  
The selected shapefile boundaries are not shown on the map.


Variable Selection – Faceted Search

Variable selection with the Giovanni interface can be performed via two different methods.  The first method is Faceted Search.  For Faceted Search, the options on the left side of the interface are shown, with many options listed under “Measurements”.   For this example, CH4 (methane) was selected.

Eight different data variables for methane were available when this selection was made.  All eight of the variables are listed, and the desired variable or variables can now be selected.

Variable Search – Keyword Search

The other Variable Search method is Keyword Search.  A keyword is simply typed into the Keyword field above the search results box, and the Search button is clicked.  The example below shows some of the results provided when the keyword Dust was entered.

Not all of the variables, 18 in total, could be shown here.  Again, once the results are displayed, the desired variables can then be selected for analysis.

 

Plotting Data and Replotting Options

Once all the necessary information has been entered and a data variable or variable has been selected for analysis, a Giovanni user simply clicks the green Plot Data button to initiate the analysis.  The next screen will show processing steps in progress.   If an error message is encountered during processing, the user can click the Feedback button to capture the workflow for an email message, and send it to the Giovanni Development team, where it can be investigated.

The following example shows some possibilities for replotting. Note that the maximum and minimum data values for the color palette range can also be adjusted, and the plot can be displayed with either a linear or logarithmic scale (the latter is mostly used for types of ocean data).

The initial result for the Tropical Rainfall Measuring Mission (TRMM) 3A12v7 monthly Rain Rate variable, plotted over the southwestern United States in January 2009, is shown below.

TimeAvgMap Screen 1.png

Note that the map can be zoomed ( +/- controls at top left) and moved by clicking and dragging with the cursor.   Here is the map, zoomed and moved to center on the plotted region.

TimeAvgMap Screen 2.png

For the replotting options, click on the box labeled “Layers” at top right.

TimeAvgMap Screen 3.png

One possible refinement available with these options is remove the overlays.  Click on “Countries” and “Grid” to remove the state borders and names, and the grid lines.   (“Decorations” buttons will remove or add titles, captions, and color palette, which is the “Legend”.)

TimeAvgMap Screen 4.png

To further refine the plot, in the Layers box, click on the daisy wheel labeled “Options”, which provides these options:

TimeAvgMap Screen 5.png

To refine this plot, the following selections were made – adjustment of the color palette value range, change of the actual color palette, and contouring of  the data pixels (called “Smoothing” in the box, but this operation is not an actual mathematical smoothing calculation).  Giovanni uses matplotlib's filled contour algorithm to create contoured plot images. This algorithm removes the line boundaries between data pixels.

Here is the result:

TimeAvgMap Screen 6.png

To output this image, click on Download, which provides the three options shown below.  Following the ‘Projections’ section, these download format options are explained in the ‘Output Options’ section.

TimeAvgMap Screen 7 download options.png


Projections (added October 2017)

Polar Projection options were added with the release of Giovanni Version 4.24.  This addition added a new ‘Projection’ field to the Replotting Options box, shown below.

Ozone projection choice 1.png

Equidistant Cylindrical is the default map projection.  Clicking on the down arrow shows the two polar projection options (highlighted in the image below).

polar projection for user manual section.png

Below is the Equidistant Cylindrical plot and the South Polar projection plot of daily ozone concentration data (in Dobson Units) from the Ozone Measuring Instrument (OMI) for the period October 15-17, 2010.  For a full polar projection plot, choose -180 as the West longitude and 180 as the East longitude.

Ozone Eq Cylindrical Oct 15-17 2010.png

Ozone South Polar October 15-17 2010.png

Output Options

Mapped Image Output Options

A map image can be downloaded in one of three image formats:

KMZ – A KMZ file is an output in Keyhole Markup Language (KML). This format is supported by Google Earth and allows images to be imported into Google Earth.

PNG – A standard image format.

GeoTIFF – GeoTIFF is a public domain metadata standard which allows georeferencing information to be embedded within a TIFF file.  GeoTIFF images can be used in Geographic Information Systems (GIS) applications.

Image Data Download File Options

In addition to the three image format download options described above, the data for the mapped image can be downloaded as a NetCDF file (.nc extension).  To access the NetCDF file, and also the three image format file options, click on ‘Downloads’ in the History tree at right on the output display page.

Time-Series Output Options

A time-series plot can be downloaded as a PNG image.

Time-Series Data Download File Options

The data in the time-series plot can be downloaded as a Microsoft Excel Comma-Separated Values (CSV, .csv) file.  This output data can also be placed in other spreadsheet applications, such as Google Docs or Open Office.

Output for Other Plotting Options

For most of the plot options in Giovanni, the actual plot can be downloaded as a PNG file, and the data is available as a NetCDF file.


How to acknowledge Giovanni

We request that the Goddard Earth Sciences Data and Information Services Center (GES DISC) be specifically and clearly acknowledged if Giovanni (or data downloaded from Giovanni) is used for data analyses and visualizations in publications, posters, oral presentations, reports, Web pages, and other types of scientific media.  If assistance from GES DISC staff members is obtained which contributes substantially to scientific content, co-authorship is appropriate.

Cut-and-paste the following general Giovanni acknowledgment statement into any of the forms of scientific communication listed above:

Analyses and visualizations used in this [study/paper/presentation] were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC."

Meeting presentations: If Giovanni data visualizations are utilized in public presentations (particularly scientific meeting presentations), we would like to know. Such information is very important as justification for continued Giovanni funding and development!   We would greatly appreciate a short email message providing the title of the presentation, the abstract (if available), and the meeting where it was presented.   Please send this message to gsfc-help-disc@lists.nasa.gov with “Giovanni presentation information” as the Subject.

General Giovanni Reference:

The following publication in Eos, Transactions of the American Geophysical Union, can be used as a general reference to Giovanni in published works:

J. G. Acker and G. Leptoukh, “Online Analysis Enhances Use of NASA Earth Science Data”, Eos, Trans. AGU, Vol. 88, No. 2 (9 January 2007), pages 14 and 17.


Suggestions

Acknowledging the Use of Data in Giovanni

Both Giovanni and the mission or activity which provided the data should be acknowledged.  Giovanni provides information about the mission or activity which produced the data.  If further guidance is required, contact the GES DISC Help Desk, or contact the data source directly.

As an example, if data from MODIS was utilized, a statement such as the following can be used in addition to the general usage statement above:

"We also acknowledge the MODIS mission scientists and associated NASA personnel for the production of the data used in this research effort."

If multiple sources of data are utilized, a general statement may be appropriate, such as:

"We acknowledge the mission scientists and Principal Investigators who provided the data used in this research effort."

Co-authorship guidelines:

Data in the Giovanni system is acquired from many different missions and activities (such as modeling). Extensive use of the data may require consultation with mission scientists and consideration of co-authorship for these scientists. Responsibility for granting co-authorship and providing acknowledgement in published research publications and other forms of scientific communication ultimately resides with the primary author.


General Plot/Service Guidelines

Using Shapes to Specify Areas

Shapes are treated differently depending on whether or not Giovanni needs to average over the region or simply subset the region.

When Giovanni averages over an area in services (such as Area-Averaged Time Series), the shape is rasterized (converted to pixels) at a resolution four times higher than that of the data. The high-resolution raster array is then regridded to an array equal to the data resolution, with weights proportional to the amount of shape coverage in each cell. The shape coverage weights are then further weighted by the cosine of the latitude, as described in the section on calculating statistics. These weights are used in the area averaging computation to enforce that cells with lower shape coverage have a smaller influence on the resultant average.

When Giovanni uses the shape to subset a region, in services such a Time-Averaged Map, the shape is used to mask the data and keep all grid cells that at least partially overlap the shape.

Land-Sea mask data are included as two shapefiles, “Sea Only” and “Land Only”.  These shapefiles enable land & sea masking capability. For example, if a bounding box is defined and the “Land Only” shape file is selected, then the defined region is Land-Only within the bounding box. Currently two plot types, Time Averaged Map and Area-Averaged Time Series, are enabled for land sea masking capability.

In Giovanni, we derived a new sea mask from the original by defining the water surface as greater than or equal to 75% water. For data sets with different grid resolutions, a regridding algorithm is applied to this mask to derive a compatible mask for the corresponding grid resolution of the data.

Calculating Weighted Statistics 

Most Giovanni services calculate aggregate statistics of some sort along one or more dimensions in time and space.

Mean and Standard Deviation

With the exception of statistics for the Histogram plot, both these statistics use weights. Weights are the cosine of the center latitude of the data point being weighed. In the case of shapes, weights are further adjusted as described in "Using Shapes to Specify Areas."

The formula used to calculate the mean is:

Weighted Mean

Formula for weighted mean.

where w represents the weights, d represents the data points, and i is an index over all the data points being averaged. The formula used to calculate the standard deviation is:

Weighted Standard Deviation

Formula for weighted standard deviation.

Count, Minimum, and Maximum

These statistics are calculated for all valid data points in the selected area (i.e., fill values are excluded). For areas specified as bounding boxes, all data points whose grid center is within the bounding box are included. For shapes, all data points that at least partially overlap the shape are included. The count is the total number of included data points, the minimum is the smallest value of the included data points, and the maximum is the largest value of the included data points.

Regridding

Some of our services (such as correlation) are required to pair two variables in time and space. If the two variables have different spatial resolutions, the finer resolution is regridded to the coarser resolution using the lats4d application.


Plot/Service Types

Maps

Time-Averaged Map

The time-averaged map shows data values for each grid cell within the user-specified area, averaged (linearly) over the user-specified time range as a map layer. Fill values do not contribute to the time average value. The generated map can be zoomed and panned.  Plot options include setting minimum and maximum values for the color scale, and in some cases selecting other palettes.

Example:  Time-Averaged Map of precipitation from Typhoon Chapala, for the period October 27 to November 2, 2015.

Vector magnitude maps, such as those for wind speed magnitude, compute the magnitude of the vector at each time step first before averaging the magnitudes of each grid cell together across time. In contrast, vector maps compute the averages of the latitudinal and longitudinal components of each grid cell across time and display the resulting vectors.

Animation

The Animation service shows individual time slice maps of a data variable in an animated sequence.  Each file included in the animation can be downloaded in a .zip file that contains each image in PNG format.  These can be used to create an animated video in other applications.

Seasonal or Monthly Average Maps

The Seasonal or Monthly Average maps compute averages for either a specific month or a 3-month period corresponding to the meteorological seasons (DJF=Dec,Jan,Feb;  MAM=March,April,May; JJA=June, July, August; and SON=Sep, Oct, Nov).  The average values are computed over the years specified in the selection screen and displayed in a map. More than one month or season can be selected.  This service is only available for monthly data.

Example:  Average of April months over the years 2010-2015 for Combined Dark Target Aerosol Optical Depth (AOD) Mean of Daily Mean data – the region is Northwest Africa and the northern equatorial Atlantic Ocean.


Accumulation Map

A few variables are available for the Accumulation Map, in which instead of averaging over time, a total is computed over time for a given grid cell. These are typically precipitation-related variables.  This service and are restricted to data variables that are continuous, with few or no data gaps. (The reason for this specification is that gaps are treated the same as values of 0, resulting in a possibly low bias in data with significant gaps.)

Example:  Accumulated rainfall, Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) Late Run product, May 12-22, 2016.


Time-Averaged Overlay Map

The Time-Averaged Overlay Map allows different options regarding the visualization of data.

Option 1:   A map colored according to the data values in a color palette can be combine with contours showing the numerical values of the same data variable.

Option 2:  A map colored according to the data values in a color palette can be combined with contours showing the numerical values of a different data variable.

Option 3:  Color or contour maps can be combined with data variable depicted as a vector.  If both a color map and contour map are used, the vector variable can also be shown as the third variable in the map.

The data range of the color palette and contour map can be changed according to user preference, and the spacing of the contours can also be specified.  

Example:  The map of the Benguela Upwelling Zone on the west coast of southern Africa shows chlorophyll concentrations in color, sea surface temperatures as contours, and wind speed as vectors.  The winds blowing in one constant direction cause deeper, colder water with nutrients to come to the surface, increasing the growth of phytoplankton, which contain chlorophyll.

Benguela_upwelling_zone_wind_SST_chl.png

Comparisons

Correlation Map (and other comparisons)

The correlation map calculates the correlation coefficient using simple linear regression between two variables over time within each grid cell, producing two maps: one showing the correlation coefficient (R) and the other displaying the number of contributing (matching) samples in each grid cell.  (Note that the values from both variables must be non-fill values, in order to contribute to the correlation computation.)  Any grid cell that contains fewer than three matched pairs over time will be assigned a fill value.

An additional product of the correlation computation is an average at each grid cell of the differences between the two variables at each time step for that grid cell. This map may contain more values than the correlation map, as the differences will be computed for as few as one non-fill matched time step in a grid cell.

Example:  Correlation Map of Monthly Tropical Rainfall Measuring Mission (TRMM) 3B43v7 Precipitation Rate and Atmospheric Infrared Sounder (AIRS) Monthly Daytime Cloud Fraction.  The precipitation rate and cloud fraction would be expected to be significantly correlated, as cloud cover is frequently associated with rain.  Because this is an annual correlation map for the year 2012, the areas where there is a negative correlation are probably due to winter snowfall, as TRMM did not measure snow as precipitation.  Thus, for winter storms, there would be cloud cover but no observed precipitation.

Static Scatter Plot

The scatter plot produces a (static) scatter plot of all data pairs from two selected variables.  The data pairs are matched in both space (grid cell) and time. The plot shows both the scatter and the parameters of the simple linear regression, i.e., slope, offset and correlation coefficient (R). Caveat:  the averaging that occurs within regridding may produce an artificially high correlation coefficient; interpret with care!

Example:  Scatter plot of Cloud Fraction vs. Precipitation for July 2012 over the contiguous United States (the same region as used above).


Interactive Scatter Plot

The interactive scatter plot produces a scatter plot and a map showing the location of data pairs in the scatter plot. Users can select data pairs of interest by selecting data pairs (click and drag on the scatter plot). Users can also select locations of interest by selecting region of interest in the map.

Example:   Interactive Scatter Plot of monthly AIRS Daytime Cloud Fraction data vs. monthly TRMM 3B43v7 precipitation rate data for July 2012. The first image shows the entire area.  Clicking on a point in the scatter plot will provide the geographical coordinates of that pixel and the corresponding data values.


The second image shows a smaller area derived from the first area.  The scatter plot now shows only the points corresponding to that area.


Time-Averaged Scatter Plot

The Time-Averaged Scatter Plot produces a scatter plot of all co-located points averaged over time and a map showing the location of data pairs in the scatter plot. Only values that are non-fill for both data fields at a given time-step are used in the computation of the averages over time for each grid cell.  

Users can select data pairs of interest by selecting data pairs (click and drag on the scatter plot). Users can also select locations of interest by selecting region of interest in the map.

Example:  For a similar area as used above, but now averaged over the year 2012.  Note that the data products are reversed on the axes.


Area-Averaged Scatter Plot

The Area-Averaged Scatter Plot computes an average over the selection area for each time step of two separate variables. The resulting values are matched up by time and plotted as an X-Y scatter plot. All cells whose center point falls within the selection box are included.

Example:  Area-Averaged Scatter Plot of monthly AIRS Daytime Cloud Fraction data vs. monthly TRMM 3B43v7 precipitation rate data for 2012 in the northeastern United States (approximately the same area as used for the second interactive scatter plot above).


Difference of Time-Averaged Maps

The Difference of Time-Averaged Maps computes the time average for each grid cell for two variables being compared. The differences between the two resultant maps are then computed and plotted on a map.  Only variables with the same Measurement and Units can be differenced in this way.  Fill values in either resultant map are not included in the final difference.

Example:  Difference between two TRMM precipitation rate data products, 3B43v7 – 3A12v7 , for July 2012, over the southeastern United States.   The predominance of negative values (blue) indicates that the 3A12v7 product estimated higher precipitation rates than the 3B43v7 data product.


Time Series

Area-Averaged Time Series

The standard Giovanni time-series plot is produced by computing spatial averages over the user-selected area of a given variable for each time step within the user's range.  Fill values do not contribute to the spatial averages. Each average value is then plotted against time to create the time-series output.

Example:  Area-Averaged Time Series of AIRS Monthly Cloud Fraction (Daytime/Ascending) over Maryland for the years 2003-2005.


Seasonal (Interannual) Time Series

The Seasonal Time Series computes an area-averaged time series for each year in the user's selection for a given month or 3-month meteorological season, To avoid biasing the results, partial seasons (i.e., missing one or two months) are not plotted. Meteorological winter (Dec-Jan-Feb) is labeled with the year in which January falls, so DJF for 2007 goes from Dec 2006 to Feb 2007.  This service is available for monthly data only.   June 2017:  Giovanni Release 4.23 includes shapefile support in this service, and also provides comma-separated-variable (CSV) text download for the values shown in any interannual time-series plot.

Example:  Seasonal Time-Series of Area-Averaged Time Series of AIRS Monthly Cloud Fraction (Daytime/Ascending) for an area covering the state of Maryland and parts of adjacent states, 2003-2014.

 

Demonstration Videos:

ASCII Time-Series Data

Seasonal Time Series

Time-series for multiple data variables


Hovmöller Plots

The Hovmöller plot averages over either latitude or longitude at each time step and creates a two-dimensional color slice plot for the remaining horizontal dimension vs. time.  Lat vs. time Hovmöller plots show latitude on the vertical axis.  Lon vs. time Hovmöller plots show longitude on the  horizontal axis.

Example, Lat vs. Time Hovmöller Plot:   This plot shows AIRS Monthly Cloud Fraction (Daytime/Ascending) for the tropical Atlantic Ocean in 2004, including the near-coastal areas of South America and Africa.  During the rainy season, cloud fraction increases on the western side of the Atlantic over South America.  In autumn, tropical weather systems that can become tropical storms or hurricanes increase cloud fraction on the eastern side.

Example, Lon vs. Time Hovmöller Plot:   This plot shows AIRS Monthly Cloud Fraction (Daytime/Ascending) for the tropical Atlantic Ocean in 2003, showing the seasonal location of clouds associated with the Intertropical Convergence Zone (ITCZ).

Time Series of Area-Averaged Differences

This service compares two variables over time by first differencing the first variable from the second at each grid cell, and then computing the average difference over the user-selected area. The area-averaged difference is computed over a geographic (Cartesian) map.

Example:  Time-Series of Area-Averaged Differences for AIRS Monthly Cloud Fraction (Daytime/Ascending) and Monthly Cloud Fraction (Nighttime/Descending) for the tropical Atlantic Ocean, approximately from the Equator to 12 degrees N.  The smallest difference occurs when there are less clouds overall, in October.


Vertical Plots

Cross Section (Latitude-Pressure)

This service creates a two-dimensional representation of data parameter values plotted in pressure or altitude (in the vertical dimension) vs. latitude (in the horizontal dimension). The data parameter values in the Cross-Section Plot are interpolated and displayed in log-scale. The data are averaged over longitude, and the service will generate a profile rather than a cross-section if a single latitude value is selected.

Example:  Cross Section, Latitude-Pressure of Relative Humidity for the Atlantic Ocean from approximately 60 degrees N to 60 degrees South. (Note, this image was labeled “Cross Map” as this was the name of the service when the plot was created.)


Cross Section (Longitude-Pressure)

This service creates a two-dimensional representation of data parameter values plotted in pressure or altitude (in the vertical dimension) vs. longitude (in the horizontal dimension). The data parameter values in the Cross-Section Plot are interpolated and displayed in log-scale. The data are averaged over latitude, and the service will generate a profile rather than a cross-section if a single longitude value is selected.

Example:  Cross Section, Longitude-Pressure for approximately 2 degrees North to 14 degrees North, over the Atlantic Ocean, central Africa, and the Indian Ocean. Note how humidity is higher at altitude over the African continent.  (Note, this image was labeled “Cross Map” as this was the name of the service when the plot was created.)


Cross Section (Time-Pressure)

This service creates a two-dimensional representation of data parameter values plotted in pressure or altitude (in the vertical dimension) vs. time (in the horizontal dimension). The data parameter values in the Cross-Section Plot are interpolated and displayed in log-scale. The data are averaged over longitude and latitude and will generate a profile rather than cross-section if the Begin Time and End Time are the same.

Example:  Time-Pressure Cross Section of AIRS Relative Humidity (Daytime/Ascending) over California/Nevada/Arizona region, 2010-2012.  The seasonal drying of the atmosphere during the warmest months of summer is visible in this plot.  (Note, this image was labeled “Cross Map” as this was the name of the service when the plot was created.)


Vertical Profile (Time and Space Averaged)

Several of the variables in Giovanni have a vertical dimension in addition to the horizontal dimensions of Longitude and Latitude.  For example, the Atmospheric Infrared Sounder (AIRS) data variables of temperature, relative humidity, and some atmospheric gases (including methane and ozone) have a vertical dimension of atmospheric pressure.  The vertical profile plot option displays a profile of the given variable, which is first averaged over the user-selected region and then over the selected period.

Example:  Vertical Profiles of AIRS Monthly Air Temperature and Relative Humidity for the eastern tropical North Atlantic Ocean off of northern Africa.  The Saharan Air Layer is characterized by low relative humidity.

 


Other Plots

Zonal Mean


The Zonal Mean over a given area is the sequence of data generated by taking the average over a range of longitudes for each latitude. The Zonal Mean calculation only works with data in a single atmospheric layer (defined by pressure in hPa), such as 300 hPa as an example. The zonal mean cannot be calculated for a pressure range, i.e., for the range 300-400 hPa. The zonal mean operation works by exporting the data from the dataset and then averaging along the longitude axis for each latitude point.

Example:  Zonal Mean Plot of AIRS Atmospheric Temperature at 500 hPa for January 2010 over the United States and Canada.


Histogram

The histogram service computes a histogram over the values present in the given temporal and spatial selection. No averaging is done over any dimensions. Fill values in the data are dropped and not considered in the results. The unweighted sample mean, unweighted sample standard deviation, and median are also presented in a box in the top right hand corner.

Example:   Histogram of MODIS Monthly Dark Target and Deep Blue Mean Aerosol Optical Depth values for April 2010 over northern Africa.  The corresponding map is shown at right.

 

 

Other Features

Units Conversion

Many of the variables can be converted from the current units to different units, such as mm/hr to inch/day.  This capability is indicated by an option menu in the Units column for that variable (coming soon...) For efficiency's sake, this conversion is usually applied to the output data from a given service.  However, there are two cases where the conversion must be done before the processing algorithm runs. The first is for comparison services that require identical units to be sensible, i.e., the services with the word "Difference" in them.  The second set of cases are those where the service algorithm aggregates (e.g., averages) the data over the time dimension.  In these case, if the destination units is a monthly rate (e.g., inch/month), then the conversion must be done before the algorithm runs in order to account for the varying number of days in each month.

Caveats 

Service requests for variables specified in monthly rate units (e.g., mm/month) will give plots bias relative to plots that use variables with daily or hourly rate units (e.g., inch/day).  Plots that display the time dimension will tend to show higher values for longer months (i.e., months with more days). For example, suppose a user requests a time series of precipitation in mm/month. The March data points will show the total precipitation for 31 days while the April data points will show the total precipitation for only 30 days.   Plots that average over the time dimension will have similar problems. Longer months will tend to have larger values, which will pull the average up. Shorter months will tend to have smaller values, which will pull the average down.  Histogram plots will be slightly skewed by monthly units conversion. Values from longer months will tend to end up in higher-valued bins and values from shorter months will end up in lower-valued bins.


Release Notes

4.28 Release Notes

Release Date:  2018-08-31

New Features:

Bug Fixes:

4.27 Release Notes

Release Date:  2018-07-31

New Features:

Bug Fixes:

4.26 Release Notes

Release Date:  2018-04-01

New Features:

Plot Options:

In this release, plot options are now available for many plot types (excluding maps, which already had a suite of plot options).  Many of these plot types did not have plot options prior to this release.

The plot types and the new plot options available for them are listed below.

Area-Averaged Time-Series:  The minimum and maximum values for the Y-axis can be changed, and a best-fit trend line can be added to the plot.

Area-Averaged Scatter Plot (Static):  The minimum and maximum values for both the X- and Y-axes can be changed to user-specified preferences.

Vertical Profile:   The Vertical Profile image can now be downloaded as a PNG image.

Time Series of Area-Averaged Differences:  The minimum and maximum values for the Y-axis can be changed, and a best-fit trend line can be added to the plot.

Cross-Section:  Cross-Section Plots now provide the capability of adjusting the Y-axis minimum and maximum values and the data range minimum and maximum values.  These plots also allow users to select alternate color palettes (found at the bottom of the Plot Options selection box).

Hovmöller Plots:   Hovmöller Plots now provide the option of adjusting the data range minimum and maximum values, and alternate color palettes can be selected.

Zonal Mean:  The Y-axis minimum and maximum values can now be specified by the user.

Histogram:  The Histogram Plot function now allows users to select the logarithmic plot option for the data range, the Y-axis, or both.

4.25 Release Notes

Release Date:  2017-12-22

New Features

Bug Fixes

New Data Variables

4.24 Release Notes

Release Date:  2017-10-31

New Features

New Data Variables

4.23 Release Notes

Release Date: 2017-07-31

New Features

New Data Variables

4.22 Release Notes

Release Date: 2017-04-17

New Features

4.21 Release Notes

Release Date: 2016-10-13

New Features

New Data Variables

4.19 Release Notes

Released Date: 2016-04-14

New Features

New Data Variables

4.18 Release Notes

New Features

New Data Variables

4.17 Release Notes

New Features

New Data Variables

4.16 Release Notes

New Features

New Data Variables

4.15 Release Notes

New Features

New Data Variables

4.14 Release Notes

New Features

New Data Variables

4.13 Release Notes

New Features

New Data Variables

Additional notes

4.12 Release Notes

New Features

New Data Variables

4.11 Release Notes

New Features

4.10 Release Notes

New Features

4.9 Release Notes

New Features

4.8 Release Notes

New Services

New Features

New Data Variables

New for Giovanni-4 vs. Giovanni-3

New User Interface

The User Interface is being redesigned to be less opaque to new and occasional users.  It also allows users to narrow down variables for selection either by selecting particular attributes ("faceted browsing") or filtering on keywords.  However, experienced Giovanni users may see some "user interface shift shock". In some cases, certain things may seem more difficult or tedious to do than in Giovanni 3.  Please tell us those things, with particular reference to how you used to do them in Giovanni 3!  We may also be able to provide some short cuts (e.g., Bookmarkable URLs below).

Bookmarkable URLs

Bookmarkable URLs allow you to save URLs in order to re-run the exact same workflow at any future date. These can also be used to save partially filled in forms, acting as a kind of template for common analysis operations.

Known Issues

This release of Giovanni contains some bugs, some known (see Known Issues below), and some not yet known.  Please send us feedback using the Feedback button.  

Browser Compatibility

User Interface

Map (Time Averaged)

Map (Time Averaged Overlay)

Map (Difference of Time Averaged)

Interactive Scatter and Time-Averaged Scatter Plots

Time Series Plot

Animation

Seasonal Time Series